Variations of the solar cycle profile in a solar dynamo with fluctuating dynamo governing parameters
نویسندگان
چکیده
Context. Solar cycles vary in their amplitude and shape. There are several empirical relations between various parameters linking cycle’s shape and amplitude, in particular the Waldmeier relations. Aims. As solar cycle is believed to be a result of the solar dynamo action, these relations require explanation in the framework of this theory. Here we aim to present a possible explanation of such kind. Methods. We relate the cycle-to-cycle variability of solar activity to fluctuations of solar dynamo drivers and primarily to fluctuations in the parameter responsible for recovery of the poloidal magnetic field from the toroidal one. To be specific, we develop such a model in the framework of the mean-field dynamo based on the differential rotation and α-effect. Results. We demonstrate that the mean-field dynamo based on a realistic rotation curve and nonlinearity associated with the magnetic helicity balance reproduces both qualitatively and quantitatively the Waldmeier relations observed in sunspot data since 1750 (SIDC data). The model also reproduces more or less successfully other relations between the parameters under discussion, in particular, the link between odd and even cycles (Gnevyshev-Ohl rule). Conclusions. We conclude that the contemporary solar dynamo theory provides a way to explain the cycle-to-cycle variability of solar activity as recorded in sunspots. We discuss the importance of the model for stellar activity cycles which, as known from the data of HK project, demonstrate the cycle-to-cycle variability similar to solar cycles.
منابع مشابه
Grand Minima of Solar Activity and the Mean-Field Dynamo
We demonstrate that a simple solar dynamo model, in the form of a Parker migratory dynamo with random fluctuations of the dynamo governing parameters and algebraic saturation of dynamo action, can at least qualitatively reproduce all the basic features of solar Grand Minima as they are known from direct and indirect data. In particular, the model successfully reproduces such features as an abru...
متن کاملMagnetic helicity evolution during the solar activity cycle: observations and dynamo theory
We study a simple model for the solar dynamo in the framework of the Parker migratory dynamo, with a nonlinear dynamo saturation mechanism based on magnetic helicity conservation arguments. We find a parameter range in which the model demonstrates a cyclic behaviour with properties similar to that of Parker dynamo with the simplest form of algebraic α-quenching. We compare the nonlinear current...
متن کاملSession III Solar and stellar cycles and variability on century timescale
Observational data concerning the long-term history of cyclic solar activity as recorded in sunspot and isotopic data are discussed in the context of solar dynamo theory. In particular, a simple dynamo model based on differential rotation and the mirror asymmetry of convection with random fluctuations of dynamo governing parameters is shown to reproduce some basic features of the solar magnetic...
متن کاملReversals of the solar magnetic dipole in the light of observational data and simple dynamo models
Context. Observations show that the photospheric solar magnetic dipole usually does not vanish during the reversal of the solar magnetic field, which occurs in each solar cycle. In contrast, mean-field solar dynamo models predict that the dipole field does become zero. In a recent paper it was suggested that this contradiction could be explained as a large-scale manifestation of small-scale mag...
متن کاملSolar Cycle Variation of the Solar Internal Rotation : Helioseismic Inversion and Dynamo Modelling
We report our first results on comparing the variations of the solar internal rotation with solar activity, as predicted by non-linear solar dynamo modelling, with helioseismic measurements using the SOHO MDI data.
متن کامل